id | size | b\cap k-lowest weight | b\cap k-highest weight | Module basis | Weights epsilon coords |
---|---|---|---|---|---|
Module 1 | 1 | (0, 0, 0, 0, 0, -1, -2) | (0, 0, 0, 0, 0, -1, -2) | g_{-19} | -\varepsilon_{6}-\varepsilon_{7} |
Module 2 | 1 | (0, 0, 0, 0, 0, -1, 0) | (0, 0, 0, 0, 0, -1, 0) | g_{-6} | -\varepsilon_{6}+\varepsilon_{7} |
Module 3 | 1 | (0, 0, 0, -1, 0, 0, 0) | (0, 0, 0, -1, 0, 0, 0) | g_{-4} | -\varepsilon_{4}+\varepsilon_{5} |
Module 4 | 21 | (-1, 0, 0, 0, 0, 0, 0) | (1, 0, 0, 0, 0, 0, 0) | g_{1} g_{8} g_{-47} g_{34} g_{-31} g_{48} g_{-27} g_{-2} g_{49} -h_{7}-h_{6}-h_{5}-h_{4}-h_{3} -h_{2} 2h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1} g_{-49} g_{2} g_{27} g_{-48} g_{31} g_{-34} g_{47} g_{-8} g_{-1} | \varepsilon_{1}-\varepsilon_{2} \varepsilon_{1}-\varepsilon_{3} -\varepsilon_{2}-\varepsilon_{3} \varepsilon_{1} -\varepsilon_{2} \varepsilon_{1}+\varepsilon_{3} -\varepsilon_{3} -\varepsilon_{2}+\varepsilon_{3} \varepsilon_{1}+\varepsilon_{2} 0 0 0 -\varepsilon_{1}-\varepsilon_{2} \varepsilon_{2}-\varepsilon_{3} \varepsilon_{3} -\varepsilon_{1}-\varepsilon_{3} \varepsilon_{2} -\varepsilon_{1} \varepsilon_{2}+\varepsilon_{3} -\varepsilon_{1}+\varepsilon_{3} -\varepsilon_{1}+\varepsilon_{2} |
Module 5 | 1 | (0, 0, 0, 1, 0, 0, 0) | (0, 0, 0, 1, 0, 0, 0) | g_{4} | \varepsilon_{4}-\varepsilon_{5} |
Module 6 | 2 | (0, 0, 0, -1, -1, -2, -2) | (0, 0, 0, 0, 1, 0, 0) | g_{5} g_{-33} | \varepsilon_{5}-\varepsilon_{6} -\varepsilon_{4}-\varepsilon_{6} |
Module 7 | 1 | (0, 0, 0, 0, 0, 1, 0) | (0, 0, 0, 0, 0, 1, 0) | g_{6} | \varepsilon_{6}-\varepsilon_{7} |
Module 8 | 2 | (0, 0, 0, 0, -1, -2, -2) | (0, 0, 0, 1, 1, 0, 0) | g_{11} g_{-29} | \varepsilon_{4}-\varepsilon_{6} -\varepsilon_{5}-\varepsilon_{6} |
Module 9 | 2 | (0, 0, 0, -1, -1, -1, -2) | (0, 0, 0, 0, 1, 1, 0) | g_{12} g_{-28} | \varepsilon_{5}-\varepsilon_{7} -\varepsilon_{4}-\varepsilon_{7} |
Module 10 | 2 | (0, 0, 0, 0, -1, -1, -2) | (0, 0, 0, 1, 1, 1, 0) | g_{17} g_{-24} | \varepsilon_{4}-\varepsilon_{7} -\varepsilon_{5}-\varepsilon_{7} |
Module 11 | 1 | (0, 0, 0, 0, 0, 1, 2) | (0, 0, 0, 0, 0, 1, 2) | g_{19} | \varepsilon_{6}+\varepsilon_{7} |
Module 12 | 2 | (0, 0, 0, -1, -1, -1, 0) | (0, 0, 0, 0, 1, 1, 2) | g_{24} g_{-17} | \varepsilon_{5}+\varepsilon_{7} -\varepsilon_{4}+\varepsilon_{7} |
Module 13 | 7 | (-1, -1, -1, -1, -1, -2, -2) | (1, 1, 1, 1, 1, 0, 0) | g_{25} g_{-39} g_{-36} g_{-13} g_{16} g_{21} g_{-41} | \varepsilon_{1}-\varepsilon_{6} -\varepsilon_{2}-\varepsilon_{6} -\varepsilon_{3}-\varepsilon_{6} -\varepsilon_{6} \varepsilon_{3}-\varepsilon_{6} \varepsilon_{2}-\varepsilon_{6} -\varepsilon_{1}-\varepsilon_{6} |
Module 14 | 2 | (0, 0, 0, 0, -1, -1, 0) | (0, 0, 0, 1, 1, 1, 2) | g_{28} g_{-12} | \varepsilon_{4}+\varepsilon_{7} -\varepsilon_{5}+\varepsilon_{7} |
Module 15 | 2 | (0, 0, 0, -1, -1, 0, 0) | (0, 0, 0, 0, 1, 2, 2) | g_{29} g_{-11} | \varepsilon_{5}+\varepsilon_{6} -\varepsilon_{4}+\varepsilon_{6} |
Module 16 | 7 | (-1, -1, -1, -1, -1, -1, -2) | (1, 1, 1, 1, 1, 1, 0) | g_{30} g_{-35} g_{-32} g_{-7} g_{22} g_{26} g_{-38} | \varepsilon_{1}-\varepsilon_{7} -\varepsilon_{2}-\varepsilon_{7} -\varepsilon_{3}-\varepsilon_{7} -\varepsilon_{7} \varepsilon_{3}-\varepsilon_{7} \varepsilon_{2}-\varepsilon_{7} -\varepsilon_{1}-\varepsilon_{7} |
Module 17 | 2 | (0, 0, 0, 0, -1, 0, 0) | (0, 0, 0, 1, 1, 2, 2) | g_{33} g_{-5} | \varepsilon_{4}+\varepsilon_{6} -\varepsilon_{5}+\varepsilon_{6} |
Module 18 | 3 | (0, 0, 0, -1, -2, -2, -2) | (0, 0, 0, 1, 2, 2, 2) | g_{37} 2h_{7}+2h_{6}+2h_{5}+h_{4} g_{-37} | \varepsilon_{4}+\varepsilon_{5} 0 -\varepsilon_{4}-\varepsilon_{5} |
Module 19 | 7 | (-1, -1, -1, -1, -1, -1, 0) | (1, 1, 1, 1, 1, 1, 2) | g_{38} g_{-26} g_{-22} g_{7} g_{32} g_{35} g_{-30} | \varepsilon_{1}+\varepsilon_{7} -\varepsilon_{2}+\varepsilon_{7} -\varepsilon_{3}+\varepsilon_{7} \varepsilon_{7} \varepsilon_{3}+\varepsilon_{7} \varepsilon_{2}+\varepsilon_{7} -\varepsilon_{1}+\varepsilon_{7} |
Module 20 | 7 | (-1, -1, -1, -1, -1, 0, 0) | (1, 1, 1, 1, 1, 2, 2) | g_{41} g_{-21} g_{-16} g_{13} g_{36} g_{39} g_{-25} | \varepsilon_{1}+\varepsilon_{6} -\varepsilon_{2}+\varepsilon_{6} -\varepsilon_{3}+\varepsilon_{6} \varepsilon_{6} \varepsilon_{3}+\varepsilon_{6} \varepsilon_{2}+\varepsilon_{6} -\varepsilon_{1}+\varepsilon_{6} |
Module 21 | 14 | (-1, -1, -1, -2, -2, -2, -2) | (1, 1, 1, 1, 2, 2, 2) | g_{44} g_{-15} g_{14} g_{-10} g_{-45} g_{18} g_{-43} g_{40} g_{-23} g_{42} g_{3} g_{-20} g_{9} g_{-46} | \varepsilon_{1}+\varepsilon_{5} -\varepsilon_{2}+\varepsilon_{5} \varepsilon_{1}-\varepsilon_{4} -\varepsilon_{3}+\varepsilon_{5} -\varepsilon_{2}-\varepsilon_{4} \varepsilon_{5} -\varepsilon_{3}-\varepsilon_{4} \varepsilon_{3}+\varepsilon_{5} -\varepsilon_{4} \varepsilon_{2}+\varepsilon_{5} \varepsilon_{3}-\varepsilon_{4} -\varepsilon_{1}+\varepsilon_{5} \varepsilon_{2}-\varepsilon_{4} -\varepsilon_{1}-\varepsilon_{4} |
Module 22 | 14 | (-1, -1, -1, -1, -2, -2, -2) | (1, 1, 1, 2, 2, 2, 2) | g_{46} g_{-9} g_{20} g_{-3} g_{-42} g_{23} g_{-40} g_{43} g_{-18} g_{45} g_{10} g_{-14} g_{15} g_{-44} | \varepsilon_{1}+\varepsilon_{4} -\varepsilon_{2}+\varepsilon_{4} \varepsilon_{1}-\varepsilon_{5} -\varepsilon_{3}+\varepsilon_{4} -\varepsilon_{2}-\varepsilon_{5} \varepsilon_{4} -\varepsilon_{3}-\varepsilon_{5} \varepsilon_{3}+\varepsilon_{4} -\varepsilon_{5} \varepsilon_{2}+\varepsilon_{4} \varepsilon_{3}-\varepsilon_{5} -\varepsilon_{1}+\varepsilon_{4} \varepsilon_{2}-\varepsilon_{5} -\varepsilon_{1}-\varepsilon_{5} |
Module 23 | 1 | (0, 0, 0, 0, 0, 0, 0) | (0, 0, 0, 0, 0, 0, 0) | h_{4} | 0 |
Module 24 | 1 | (0, 0, 0, 0, 0, 0, 0) | (0, 0, 0, 0, 0, 0, 0) | h_{6} | 0 |
Module 25 | 1 | (0, 0, 0, 0, 0, 0, 0) | (0, 0, 0, 0, 0, 0, 0) | h_{7} | 0 |